World Scientific

International Journal of Reliability, Quality and Safety Engineering \\’
www.worldscientific.com

Vol. 17, No. 5 (2010) 425-464
© World Scientific Publishing Company
DOI: 10.1142/50218539310003883

WRAPPER-BASED FEATURE RANKING
TECHNIQUES FOR DETERMINING RELEVANCE
OF SOFTWARE ENGINEERING METRICS

WILKER ALTIDOR* and TAGHI M. KHOSHGOFTAART

Department of Computer Science and Engineering
Florida Atlantic University, 777 Glades Road
Boca Raton, Florida 33431, USA
*wilker. altidor@gmail.com
ftaghi@cse. fau. edu

KEHAN GAO

Department of Mathematics and Computer Science
Eastern Connecticut State University, 83 Windham Street
Willimantic, Connecticut 06226, USA
gaok@easternct.edu

Received 23 March 2010
Revised 17 July 2010

Classification, an important data mining function that assigns class label to items in
a collection, is of practical applications in various domains. In software engineering,
for instance, a common classification problem is to determine the quality of a software
item. In such a problem, software metrics represent the independent features while the
fault proneness represents the class label. With many classification problems, one must
often deal with the presence of irrelevant features in the feature space. That, coupled
with class imbalance, renders the task of discriminating one class from another rather
difficult. In this study, we empirically evaluate our proposed wrapper-based feature rank-
ing where nine performance metrics aided by a particular learner and a methodology
are considered. We examine five learners and take three different approaches, each in
conjunction with one of three different methodologies: 3-fold Cross-Validation, 3-fold
Cross-Validation Risk Impact, and a combination of the two. In this study, we consider
two sets of software engineering datasets. To evaluate the classifier performance after
feature selection has been applied, we use Area Under Receiver Operating Characteristic
curve as the performance evaluator. We investigate the performance of feature selection
as we vary the three factors that form the foundation of the wrapper-based feature rank-
ing. We show that the performance is conditioned by not only the choice of methodology
but also the learner. We also evaluate the effect of sampling on wrapper-based feature
ranking. Finally, we provide guidance as to which software metrics are relevant in soft-
ware defect prediction problems and how the number of software metrics can be selected
when using wrapper-based feature ranking.

Keywords: Feature selection; wrapper-based feature ranking; ranker aid; performance
measures; sampling techniques; software metrics.

425

http://dx.doi.org/10.1142/S0218539310003883

426 W. Altidor, T. M. Khoshgoftaar & K. Gao

1. Introduction

The basic ingredients for software quality control and management are the software
metrics collected at various states of a software development life cycle. It is well
accepted among software practitioners, researchers, and stakeholders that software
quality improvement must begin with targeted effort on improving the software
development and maintenance process. For this reason, many software organizations
have assembled very large repositories of data, collected electronically, pertaining
to their software releases at different states of development. Data collected are often
associated with defects found during pre-release as well as post-release. Given that
data collection has become common practice in the domain of software development
engineering, the problem for most software development organizations is not the
availability of data nor the ability to access them, but rather the mining of the data
to effectively discover the relevancy of the data and ultimately potential patterns
that, when applied to new releases, can enhance their quality. By using data mining
techniques to mine their software repositories, organizations can build predictive
models to ensure the quality of future software products or releases. They are able
to detect early in the development process fault prone areas upon which they can
focus their fault detection effort. However, the software metrics often collected with
good reasons may not all be relevant for predicting the fault proneness of software
components, modules, or releases. Moreover, these same data may not be immune
to the high dimensionality or class imbalance problem often encountered in data
from other application domains such as text categorization and gene expression
classification. This thus creates the need for the use of feature selection, which
helps separate relevant software metrics from irrelevant or redundant ones, thereby
selecting the set of software metrics that are best predictors of fault proneness for
new components, modules, or releases.

In this empirical study, we present our proposed feature ranking called wrapper-
based feature ranking, also referred to as classifier-aided (or learner-aided) feature
ranking. Our wrapper-based approach is unique in that it combines aspects of
wrapper techniques (i.e., using a learner to evaluate a subset of attributes) and
individual feature evaluation (i.e., ranking methods such as filtering). To evaluate
feature relevance, we use nine performance metrics commonly used as classifier
performance evaluators. These are: Overall Accuracy, F-Measure, Geometric Mean,
Arithmetic Mean, Area under the Receiver Operating Characteristic (ROC) Curve
or AUC, Area under the Precision-Recall Curve or PRC, Best F-Measure, Best
Geometric Mean, and Best Arithmetic Mean. We apply these metrics, which form
the basis of our wrapper-based feature ranking, to software measurement data. We
show differences among the ranking techniques through the lenses of AUC. We
consider three approaches: one in which we use a 3-fold Cross-Validation, another,
a 3-fold Cross-Validation Risk Impact method, yet another where we combine the
first two methods, which we denote COMBO. For each approach, five well studied
learners are used, and we show which approach leads to better performance results

Wrapper-Based Feature Ranking Techniques 427

for which of the five learners in terms of AUC. In addition, we examine the effect of
sampling by applying seven different sampling techniques prior to wrapper-based
feature ranking. We demonstrate the effectiveness and viability of our proposed
wrapper-based feature ranking with two sets of experiments. The first set is with
a Large Legacy Telecommunications Software (LLTS) system. The second set is
with the Eclipse Defect Counts and Complexity Metrics datasets. For both sets
of experiments, we report on which choices of classifier, performance metric, and
methodology lead to the highest classification performance. One significant result of
this empirical study is the robustness of the wrapper-based ranking techniques when
Naive Bayes is the learner for both ranking and classification. Another significant
result is the validation of our new method for determining which software metrics
are most useful for defect prediction. This method for capturing software metrics
with most defect predictive power represents a breakthrough not only for software
engineering but also for other domains in which feature selection is a pre-requisite
activity.

The remainder of this paper is organized as follows. Section 2 provides some
background on feature selection, including how it is used in data mining. Section 3
provides the setup for the experiments. Sections 4 and 5 present the experimental
results with LLTS and Eclipse respectively. In Sec. 6, we present our overall analysis.
Finally, our conclusion and future work are discussed in Sec. 7.

2. Related Work

Feature selection has been applied in many application domains for many years.
In the domain of software engineering, we count, for instance, the work of Livshits
et al.' in which they presented DynaMine, “a tool for discovering usage patterns
and detecting their violations in large software systems”. In their study they pro-
posed the use of data mining techniques to discover patterns from software revision
histories. Shirabad et al.? also showed how data mining can be used to discover pat-
terns from software updates records. These patterns could be used to identify files
that potentially could require changes due to a change in another source file. The
work of Dick et al.? focused on the use of fuzzy clustering, an unsupervised learn-
ing technique, for the analysis of software metric databases. Catal et al.,* in their
software fault prediction study, considered the effect of feature selection techniques
along with dataset size and metric sets on the software fault prediction model’s
performance.

Feature selection techniques may be divided into four categories: First, there
are F'ilters, which evaluate feature relevance by examining the intrinsic charac-
teristics of the data without the use of a classifier,” and can be subdivided into
three types: Ranking,%” Subset evaluation,®° and a new framework of feature selec-
tion in which redundancy analysis is decoupled from relevance analysis.' Second,
Wrappers evaluate feature relevance by applying a predetermined classifier on sub-
sets of attributes. The same classifier or inductive algorithm is used to both select

428 W. Altidor, T. M. Khoshgoftaar & K. Gao

the relevant features and execute the mining process.!’ They are considered to
be better at producing feature subsets, but are computationally expensive. Third,
a Hybrid approach, which is a combination of filter and wrapper methods,!?!3
eliminates unwanted features by using a ranking technique and resolves any multi-
collinearity problem by using a wrapper method on the subset of relevant features.
Finally, the Embedded methods are the algorithms that perform feature selection
and induction simultaneously.’'* Because they incorporate feature selection as part
of the training process they may be more efficient given that data splitting into
training and validation set is not required and retraining every feature subset inves-
tigated from scratch is avoided.®

Chen et al.'® reported that the use of one type of feature selection, namely
wrappers, to COCOMO’s software cost estimates, drastically improved the model’s
predictive power. Rodriguez et al.'®
feature selection types, filters and wrappers, on software engineering datasets
resulted in better or equal estimates. They only considered two of each type. They
used consistency and correlation measures for the filter model while they used a
nearest neighbor (IB1) and a decision tree (C4.5) classifiers for the wrapper model.

Our proposed feature ranking, namely wrapper-based feature ranking, is empir-

showed that the use of two commonly known

ically investigated in this paper. To our knowledge, related work has seldom been
found in the domain of software engineering and data mining applications. This new
type of feature ranking technique, unlike other ones published in literature, make
use of a learner in conjunction with a performance metric to determine ranking.
The work of Ruiz et al.l” on gene expression microarray data is the closest to our
research. In their study, they presented a gene selection method based on the hybrid
model of feature selection. With their novel hybrid approach to feature selection,
they used either a wrapper-based or filter-based model as evaluation measure cri-
teria to rank the genes. Their primary focus was not on these models, but rather
on the overall hybrid approach and its efficiency as compared with a number of
different filter and wrapper based feature subset selection methods. The ranking
function was just an enabler, and its use was to advance a different research goal.

3. Experimental Design
3.1. Methodologies

In this study we consider three different methodologies along with five commonly
known learners and nine performance metrics that together constitute our wrapper-
based ranking techniques. For the first methodology, we use a 3-fold cross-validation
(CV), where the set of N instances in the training dataset is partitioned into 3 equal
sets of size % For each fold (partition), a classifier is trained on the other 2 folds
(partitions), then tested on the remaining fold. This whole procedure is performed
a total of 3 times using a different holdout partition each time, and the results on
each partition are averaged out. The training dataset for this procedure is a new
data structure, where each instance of the newly created structure contains only

Wrapper-Based Feature Ranking Techniques 429

two features: one independent feature and the dependent feature. For a training
dataset with M independent features, M data structures are obtained. A set of nine
performance metrics are obtained for each separate data structure and for each of
the five learners, indicating the performance scores associated with that particular
independent feature. Performance scores are obtained in the same manner for all
features in the dataset, one at a time. After the nine performance metrics have
been obtained for all five learners and for every feature, features are ranked based
on a particular performance metric value for each learner. Consider the scenario
shown in Table 1, an example of the wrapper-based feature ranking with the CV
methodology. The first line shows the independent features of some dataset example.
A performance score is obtained for each independent feature in the list. The last
line shows the features ranked according to their scores, which are based on some
performance metric.

The second methodology employs a 3-fold cross-validation risk impact (CV-R).
CV-R is similar to CV. However, with CV-R each instance of the training dataset
contains M —1 independent features plus the dependent feature. That is, for each of
the five learners, we first build a model with all independent features and the depen-
dent feature, obtaining all performance measures. For each independent feature, we
transform the original training dataset by removing that feature, then we build a
model with one-less independent features and the class feature to get the associated
performance measure. The risk impact for the ith feature is calculated as follows:
Impact’ = PMy; — PM}, ,, where PM denotes one of the nine performance met-
rics and 0 < ¢ < M — 1 indicates the ith feature. PM); represents PM obtained
by M features while PM}, | represents PM obtained by M — 1 features, and the
excluded one is the ith feature. Each feature is ranked based on its risk impact, with
the highest rank being the one with the highest value of impact. CV-R requires the
construction of M + 1 models, one of which uses all M independent features, while
the remaining M models use M —1 features. Consider the scenario shown in Table 2,
an example of the wrapper-based feature ranking with the CV-R methodology. The
first line shows the independent features of some dataset example. A performance

Table 1. Ex. of wrapper-based ranking with CV.

Features fo f1 f2 f3 fa fs fe fr

Evaluation Evaluated Score
1 fo 0.87
2 f1 0.83
3 f2 0.89
4 I3 0.93
5 fa 0.90
6 I 0.78
7 fe 0.80
8 fr 0.88

Rank f3 fa f2 fr fo f1 fe fs

430 W. Altidor, T. M. Khoshgoftaar & K. Gao

Table 2. Ex. of wrapper-based ranking with CV-R.

Features fo f1 fo f3 fa fs5 fe fr

Evaluation Evaluated Score Impact
1 fos J1, f2, f3, fa, f5, fe, fr 0.93 —
2 f1, f2, f3, fa, f5, fe, f7 0.87 0.06
3 fo, f2, f3, fa, fs, fe, f7 0.85 0.08
4 fo, J1, f3, fa, f5, fe, f7 0.83 0.10
5 fo, f1, fa, fa, fs, fe, f7 0.90 0.02
6 fo, f1s f2, f3, f5, fe, f7 0.81 0.12
7 fo, f1, fa, f3, fa, fe, f7 0.80 0.13
8 fos J1, f2, f3, fa, f5, f7 0.88 0.05
9 fo, f1, f2, f3, fa, f5, fo 0.89 0.04

Rank f5 fa f2 f1 fo fe f7 f3

score is obtained for each independent feature in the list along with an impact score.
The performance score is based on some performance metric. The last line shows
the features ranked according to their impact score. As we can see, this approach is
computationally expensive, especially for datasets with many features/attributes.

Our third methodology combines characteristics of both CV and CV-R to form
what we call COMBO. We proceed in the same manner as in CV by obtaining the
performance scores for all independent features in the training dataset. This time,
for each performance metric and learner, we select twice as many top features as we
plan to use in the final model. We then use CV-R on the selected features. We first
obtain all performance measures by building a model with the selected independent
features and the class feature for each of the five learners. For each of the selected
independent features, we build a model with one-less independent features and
the class feature to get the associated performance measure. Similar to the second
approach, we calculate the risk impact as follows: Impact’ = PM g — PM fS'—17 where
0 <7< S —1 indicates the ith selected feature.

For all three approaches (CV, CV-R, and COMBO), we select the top ranked
features for each performance metric, and we build models using the selected fea-
tures for each learner on the training datasets. Finally, to assess the effectiveness
of wrapper-based feature ranking, the top ranked features chosen by each ranking
technique are evaluated with five classifiers on test datasets. As evaluation metric,
we use Area Under the ROC Curve (AUC).

3.2. Feature selection threshold

This wrapper-based or classifier-aided feature ranking technique that we proposed
in Ref. 18, combines the use of a learner in a wrapper method and the individual
feature evaluation of a ranking method. For feature selection, different approaches
may be adopted. Naturally, the size of the attribute subsets is determined by the
feature selection approach chosen. In this study, the threshold for retaining the top
ranked features is obtained by [log, M|, where M is the number of independent

Wrapper-Based Feature Ranking Techniques 431

features. This criterion for determining feature subset size is simple yet provides a
non-biased approach with respect to the number of selected features. It is chosen
based on the recommendation of a software engineering expert with more than
20 years of experience.

3.3. Training and test datasets
3.3.1. LLTS

The first set of datasets used in this study consists of four software engineering
datasets which are originated from a very large legacy telecommunications software
system denoted as LLTS. Their characteristics are shown in Table 3. Each dataset
represents a separate release, depicting a new version of the overall system. The
releases are referred to as SP1, SP2, SP3, and SP4. In the case of SP2-SP4, each
release is built upon the previous release. The dataset for each release has the same
number of attributes, namely 42 independent attributes and 1 dependent attribute.
All the 42 independent attributes are of numeric data type. They represent software
metrics, which include product metrics (24), process metrics (14), and execution
metrics (4). The dependent attribute determines the class. An instance can be
classified as either fault-prone or not fault-prone. The fault-prone is the positive
(or minority) class while the not fault-prone is the negative (or majority) class. For
each of the releases, a fault-prone module has one or more software faults while
a not fault-prone module has no uncovered fault. While each dataset contains the
same number of features, each has a different number of instances. The four datasets
contain 3649, 3981, 3541, and 3978 instances, respectively. More details on these
datasets can be found in Ref. 19.

We use the instances of the first release (SP1) as training dataset for all the
LLTS experiments in this study while those of the next three releases (SP2-SP4) as
independent test datasets. This ensures a more realistic estimation of the wrapper-
based ranking and the classification performance of the learners with subsets of the
features.

3.3.2. Eclipse

In our experiments we also use publicly available data, namely the Eclipse
defect counts and complexity metrics dataset obtained from the PROMISE data
repository.?? In particular, we use the metrics and defects data at the software

Table 3. LLTS datasets characteristics.

Dataset ~ #Attributes #Instances #Pos %Pos #Neg %Neg

SP1 43 3649 229 6.28 3420 93.72
SP2 43 3981 189 4.75 3792 95.25
SP3 43 3541 47 1.33 3494 98.67

SP4 43 3978 92 2.31 3886 97.69

432 W. Altidor, T. M. Khoshgoftaar & K. Gao

packages level. The original data for Eclipse packages consists of three releases
denoted 2.0, 2.1, and 3.0 respectively. Each release as reported by Ref. 21 con-
tains the following information: the name of the package for which the metrics are
collected (name), the number of defects reported six months prior to release (pre-
release defects), the number of defects reported six months after release (post-release
defects), a set of complexity metrics computed for classes or methods and aggre-
gated in terms of average, maximum, and total (complexity metrics), the abstract
syntax tree of the package consisting of the node size, type, and frequency (structure
of abstract syntazx tree(s)).

For our study we transform the original data by: (1) removing all non-numeric
attributes, including the package names, and (2) converting the post-release defects
attribute to a binary class attribute with defective (def) being the minority class and
non-defective (nodef), the majority class. Membership in each class is determined
by a post-release defects threshold ¢, which separates defective from non-defective
packages by classifying packages with ¢ or more post-release defects as defective
and the remaining as non-defective. In our study, we use ¢ € {10, 5,3} for releases
2.0 and 3.0 while we use ¢ € {5,4, 2} for release 2.1. A different set of thresholds is
chosen for release 2.1 to keep similar class distributions as those of the other two
releases. This results into three groups. Each group contains three datasets, one
for each release with similar class distribution. All datasets contain 209 attributes
(208 independent attributes and 1 dependent attribute). While the attributes are
common, the number of instances vary per release. Releases 2.0, 2.1, and 3.0 contain
377, 434 and 661 instances respectively. Table 4 shows the characteristics of the
datasets after transformation according to each group.

Table 4. Eclipse datasets characteristics.

Grouping Dataset t #Attributes #lnstances #Pos %Pos #Neg %Neg

Eclipse-1 Eclipse-metrics- 10 209 377 23 6.10 354 93.90
packages-2.0
Eclipse-metrics- 5 209 434 34 7.83 400 92.17
packages-2.1
Eclipse-metrics- 10 209 661 41 6.20 620 93.80
packages-3.0

Eclipse-2 Eclipse-metrics- 5 209 377 52 13.79 325 86.21
packages-2.0
Eclipse-metrics- 4 209 434 50 11.52 384 88.48
packages-2.1
Eclipse-metrics- 5 209 661 98 14.83 563 85.17
packages-3.0

Eclipse-3 Eclipse-metrics- 3 209 377 101 26.79 276 73.21
packages-2.0
Eclipse-metrics- 2 209 434 125 28.80 309 71.20
packages-2.1
Eclipse-metrics- 3 209 661 157 23.75 504 76.25

packages-3.0

Wrapper-Based Feature Ranking Techniques 433

Thus, for the Eclipse experiments, there are three training and six test datasets.
Release 2.0 of each group is used as training dataset while the next two releases
(2.1 and 3.0) as test datasets. Regarding the class distribution of the transformed
versions of the original datasets, we hold no particular assumption as to how it may
affect learning. This is rather intended to provide a true reflection of imbalanced
nature often present in real world data.

3.4. Classifiers/ranker aids

In this study, we use five different machine learning algorithms or methods. These
algorithms, commonly used in data mining, serve as both aids to the ranking process
and inductive learners for the classification performance process. When they are
used in the ranking process, they are referred to as ranker aids, and when they are
used in classification performance process, they are regarded as classifiers. All five
algorithms are readily available in the WEKA data mining tool,?2 which is used in
this study.

(1) Naive Bayes (NB): Is a classifier based on Bayes’ rule of conditional probability.
It assumes conditional independence among the predictor features (independent
attributes). While this assumption is highly unlikely in real world data, research
has shown that NB often performs well on datasets with highly correlated
attributes.??

(2) Multilayer Perceptron (MLP): Is a type of neural network that uses backprop-
agation to classify instances. It contains three layers: an input layer, a hidden
layer, and an output layer.??

(3) k-Nearest Neighbor (kNN): Is a typical case-based learning algorithm, which
uses k nearest neighbors from a library of all the instances of the training
dataset and classifies each new instance into the majority class of the k closest
neighbors. In our experiments, k is set to 5, so any reference to kNN is equivalent
to S5NN.

(4) Support Vector Machines (SVM): Builds a linear discriminant function using
a small number of critical boundary samples from each class while ensuring a
maximum possible separation.2

(5) Logistic Regression (LR): Is a statistical regression model for categorical pre-
diction; it predicts the probability of occurrence of an event by fitting data to
a logistic curve.

3.5. Ranking performance measures

In this study of wrapper-based feature ranking of software engineering datasets,
we adopt nine performance measures to compute features’ relevance scores. These
ranking performance measures are defined as follows:

(1) Overall Accuracy (OA): Is a single-value measure, ranging from 0 to 1, that is
obtained by: OA = W7 where TP and TN denote true positives (number

434 W. Altidor, T. M. Khoshgoftaar & K. Gao

of positive cases correctly classified as belonging to the positive class) and
true negatives (number of negative cases correctly classified as belonging to
the negative class) respectively, and N is the total number of instances in the
dataset.

F-Measure (FM): Is a single measure that combines both precision and recall.
In other words, it is the harmonic mean of precision and recall, and it is cal-
culated as follows®*: FM = #, where R and P are Recall (zp255) and
Precision (5575), respectively. FP and FN denote false positives (number of
negative cases misclassified as belonging to the positive class) and false nega-
tives (number of positive cases misclassified as belonging to the negative class)
respectively. F'M uses a decision threshold of 0.5.

Geometric Mean (GM): Is a single-value performance measure obtained by
calculating the square root of the product of the true positive rate (percentage
of positive cases correctly classified as belonging to the positive class) and the
true negative rate (percentage of negative cases correctly classified as belonging
to the negative class). GM = VTPR x TNR, where TPR = 75t and TNR =
MTiﬁFP. GM uses a decision threshold of 0.5.

Arithmetic Mean (AM): Is a single-value measure that is obtained by calculat-
ing the arithmetic mean of the true positive rate and the true negative rate:
AM = mgw. AM uses a decision threshold of 0.5.

Area Under ROC (AUC): The area under the receiver operating character-
istic curve is a single-value measure based on statistical decision theory and
was developed for the analysis of electronic signal detection. It is the result of
plotting FPR (szjripqw) against TPR.?°

Area Under PRC (PRC): The area under the precision-recall characteristic
curve is a single-value measure depicting the tradeoff between precision and
recall. It is the result of plotting TPR against precision. Its value ranges from
0 to 1, with 1 denoting a perfect classifier.

Best F-Measure (BFM): Is obtained by getting the largest value of FM when
varying the decision threshold value between 0 and 1.

Best Geometric Mean (BGM): Is a single value obtained by getting the max-
imum geometric mean value when varying the decision threshold between
0 and 1.

Best Arithmetic Mean (BAM): Is obtained by getting the largest value of AM
when varying the decision threshold value between 0 and 1.

3.6. Classification performance measure

The effectiveness of each ranking and the associated feature selection is assessed by
evaluating the classification performance of the models subsequently trained and
tested with that particular feature selection. In all our experiments we use AUC
as the classification performance measure. Our choice of AUC is based on one of

Wrapper-Based Feature Ranking Techniques 435

its characteristics, namely its invariance to a priori class probability distributions.
Moreover, it has been proven to be statistically consistent.?6 It is an excellent
measure for determining a classifier’s ability to separate the minority class from
the majority class. It does not emphasize one class over the other as may be the
case in some other performance measures, so it is not biased against the positive
class. Given the imbalanced nature of our datasets, AUC is a very appropriate
measure for comparing the classification performance of the learners in this study.

3.7. Sampling techniques

Sampling is a common and simple practice for handling datasets with imbalanced
class distribution. With sampling the dataset is artificially altered to rebalance the
class distribution. In all the experiments for this study, we assess whether sampling
can improve wrapper-based ranking such that models built with feature selection
can be systematically improved in terms of their predictive power. Besides non sam-
pling, we consider seven sampling techniques: two versions of random oversampling
(ROS35 and ROS50), two versions of random undersampling (RUS35 and RUS50),
two versions of Synthetic Minority Oversampling Technique (SMOTE) denoted as
S35 and S50, and the weighted version of Wilsons Editing (WW).

Random oversampling (ROS) increases the number of minority instances in a
dataset by randomly duplicating minority ones until a desired class distribution is
achieved.?” After application of the random oversampling techniques, the number
of positive instances is increased such that 35% and 50% of instances of the resulted
dataset are now members of the positive class for ROS35 and ROS50 respectively.

SMOTE is a type of oversampling technique in which positive instances are
added not by random but via extrapolation among original positive instances; that
is, new instances are produced based on the k-nearest neighbors.?® After applica-
tion of SMOTE, the resulted datasets (S35 and S50) contain 35% and 50% of the
instances of the positive class respectively.

Random undersampling (RUS) decreases the number of majority instances in a
dataset by randomly deleting majority instances until a desired class distribution is
achieve.2” After application of the random undersampling techniques, the number
of negative instances is reduced such that 35% and 50% of the instances in the
resulted dataset belong to the positive class for RUS35 and RUS50 respectively.

In WW, each instance is classified using kNN with the remaining instances, and
misclassified examples of the negative class are removed. Note that the distance
measure in kNN is modified to take in consideration the class distribution (i.e.,
a weighted distance measure is obtained by multiplying the distance measure with
a class distribution weighting factor).

We only consider the application of the sampling techniques prior to perform-
ing wrapper-based feature ranking. That is, if sampling is used as a preprocessing
technique, it must precede the ranking process. Also, after feature selection, we

436 W. Altidor, T. M. Khoshgoftaar & K. Gao

have two training data sources from which we can build classification models. We
take advantage of both sources, non-sampled and sampled training datasets and
evaluate their effect on the classification performance.

4. Experimental Results: LLTS

For the LLTS experiments, the models are built using the first software release, SP1.
Next, the models are evaluated using the subsequent releases, SP2-SP4. Before any
comparison, we set the classification performance benchmarks by obtaining the clas-
sification performance results of all five learners based on all attributes in terms of
AUC. Table 5 shows the average AUC values of the models evaluated with SP2-SP4,
and they are depicted according to the classifier and sampling technique (including
No Sampling denoted by NS). For example, the top left value (0.8057) indicates the
average AUC performance value over all three testing datasets when the classifier
is NB and sampling is none. Likewise, the far right value at the bottom (0.8289)
represents the average AUC performance value over all three testing datasets when
the training data is sampled with WW prior to applying feature selection and build-
ing the model using LR. We can observe that the performances of SVM and LR
improve with data sampling.

4.1. LLTS: No sampling and feature selection

We seek to understand the impact of feature selection using wrapper-based feature
ranking techniques on the models’ predictive powers. We determine the performance
classification as the choice of ranker aid and classifier varies. With no sampling of
the first release, SP1, we apply the wrapper-based ranking techniques and build
corresponding models with feature selection. For feature selection, the subsets are
defined by the top six ranked features obtained from the wrapper-based feature
ranking of the original feature space. Note that the size of the feature subset is
obtained from [log, 42] where 42 represents the number of independent features in
the original LLTS datasets. These models are evaluated on the next three datasets
SP2-SP4. When the ranker aid and classifier are common, the average performance
is obtained over all three classification performance results. When they are different,
the average of twelve classification performance results is obtained. The results for
both cases are analyzed on all classifiers, but only the results on NB are shown

Table 5. LLTS — Average classification performance with all attributes in terms of AUC for
all sampling.

Learner NS RUS35 RUS50 ROS35 ROS50 S35 S50 WW
NB 0.8057 0.7848 0.7965 0.8057 0.8057 0.8036 0.8037 0.8061
MLP 0.8315 0.8279 0.8243 0.8281 0.8248 0.7953 0.8294 0.7924
kNN 0.7886 0.7876 0.7849 0.78 0.7801 0.7608 0.7495 0.792

SVM 0.6653 0.8319 0.8318 0.8286 0.8302 0.8267 0.8221 0.8105

LR 0.8174 0.8222 0.822 0.8308 0.8322 0.8213 0.8244 0.8289

Wrapper-Based Feature Ranking Techniques 437

Common Learner for Different Learner for

Ranker Aid and Classifier Ranker Aid and Classifier
Classifier [PM | [cv [cv-R |comBO | [cv [cv-R [comBo |
OA 0.6772| 0.7671 0.7198 0.7774] 0.7633| 0.7409
FM 0.8254| 0.8096| 0.8048 0.7821 0.7670| 0.7824
GM 0.7833| 0.8096| 0.8239 0.7821| 0.7670[0.7824
AM 0.7833] 0.8096| 0.8048 0.7811 0.7670| 0.7754
NB |AUC 0.8169| 0.8181| 0.8171 0.8156| 0.7953| 0.8050
PRC 0.8256| 0.8167| 0.8267 0.8188| 0.7651 0.8187
BFM 0.8246] 0.8324| 0.8256 0.8176] 0.7721 0.7983
BGM 0.8046(0.8104| 0.8165 0.8121| 0.8045| 0.7973
BAM 0.8153| 0.8231 0.8242 0.8142] 0.8036 0.8023

Fig. 1. AUC for classification with feature selection and no sampling.

in Fig. 1. From all the results, we can make the following observations:

With NB as the ranker aid and classifier, the classification performance in terms
of AUC is independent of the methodologies (CV, CV-R, or COMBO) and is
generally enhanced with feature selection for most of the ranking techniques
while the opposite is true with either MLP or kNN.

When the ranker aid and classifier are both either SVM or LR, the impact of
feature selection is associated with the methodology used in the ranking process.
With CV, the classification performance with feature selection, for the most part,
is maintained if not enhanced while the reverse is true with CV-R.

The use of kNN as both the ranker aid and the classifier is rather ineffectual,
given the poor performance of all classification with feature selection compared
to classification with all features, independent of the ranking technique used to
determine the top ranked features.

With different algorithms for ranker aid and classifier, models constructed with
either MLP or kNN and feature selection are more likely to show a decline in
their average classification performance.

4.2. LLTS: Sampling effect

The purpose of the second set of experiments on LLTS is to investigate the effect

of sampling on wrapper-based ranking and subsequently on the classification with
feature selection from the produced ranking. For this new set of experiments, we
consider seven sampling techniques as described in Sec. 3.7.

Prior to feature selection, we preprocess the first software release (SP1)

dataset by applying the seven sampling techniques, giving new structures that
we denote SP1-ST, where ST represents a sampling technique. Next, we apply
the wrapper-based feature ranking techniques on SP1-ST datasets. Using the three

438 W. Altidor, T. M. Khoshgoftaar & K. Gao

methodologies (CV, CV-R, and COMBO) as before, we obtain associated feature
rankings, from which we select the top six features (according to each set of rank-
ings). That is, 135 rankings for each sampled dataset are generated, and the top
six ranked software metrics of each ranking are selected to construct a pair of cor-
responding models. We proceed by building models in two manners. One model is
trained from the non-sampled dataset while the other is built using the sampled
dataset.

As an illustration, when we apply ROS35 to SP1, the resulted dataset, which
is denoted as SP1-R0S35, is run through the wrapper-based feature ranking tech-
niques. That leads to 135 rankings, one for each wrapper-based feature ranking
technique. These rankings are denoted as SP1-ROS35;, where i = 1,2,3,...,135.
For each ranking, there is a sampled structure with the top six ranked features
denoted by SP1-R0OS357 as well as a non-sampled structure with the same top
six ranked features denoted by SP1-ROS35"°. All 270 models are evaluated with
SP2, SP3, and SP4. This way, we are able to look at the effect of these various
sampling techniques and determine whether there is any difference in the models’
performance when the training dataset is based upon the sampled data on one hand
and the original data on the other hand.

The experiments results show the classification performance of all the models
in terms of AUC, with sampling prior to feature selection and same algorithm for
ranker aid and classifier as well as when the ranker aid and classifier are different.
They also depict the results when the training datasets are from the original as well
as when they are from the sampled data structure. Furthermore, they show little or
no difference between building the models with the sampled training datasets and
those with the non-sampled training datasets. Due to space limitations, we only
show Fig. 2, depicting the results of the experiments with WW and NB. However,
the following observations are based on all the results:

e When the selected features are obtained from the use of the wrapper-based
feature ranking techniques after either ROS35 or ROS50 has been applied to

WW
Common Learner for Ranker Aid and Classifier Different Learner for Ranker Aid and Classifier
Non-Sampled Sampled Non-Sampled Sampled

[Classifier [PM] [cv_ Jocv-R_JcomBo] [cv._ Jcv-R _[comBO| [cv_ Jcv-R [comBO| [cv_ [cv-R [COMBO]

OA 0.6772| 0.7732| 0.6567 0.6774| 0.7745| 0.6565 0.7752| 0.7772| 0.7959 0.7755| 0.7774| 0.7959
FM 0.8290| 0.8029| 0.8288 0.8285| 0.8027| 0.8282 0.7830| 0.8026| 0.7840 0.7832| 0.8027| 0.7847
GM 0.7840| 0.8029| 0.8288 0.7840| 0.8027| 0.8282 0.7830| 0.8026| 0.7858 0.7832| 0.8027| 0.7865
AM 0.8290| 0.8029| 0.8288 0.8285| 0.8027| 0.8282 0.7830| 0.8026(0.7841 0.7832| 0.8027| 0.7847

NB |AuC 0.8167| 0.8113| 0.8169 0.8161| 0.8119| 0.8163 0.8072| 0.8150| 0.8108 0.8071| 0.8154| 0.8113
PRC 0.8256| 0.8204| 0.8253 0.8249| 0.8210| 0.8247 0.8124| 0.7689| 0.8114 0.8118| 0.7696| 0.8114
BFM 0.8251| 0.8282| 0.8185 0.8248| 0.8287| 0.8176 0.8127| 0.7865| 0.8094 0.8122] 0.7877| 0.8092
BGM 0.8046| 0.7985| 0.8149 0.8044| 0.8001| 0.8150 0.8071| 0.8075| 0.7977 0.8075| 0.8077| 0.7980
BAM 0.8046| 0.8136| 0.8223 0.8044| 0.8148| 0.8219 0.8195| 0.8065| 0.8042 0.8194| 0.8067| 0.8046

Fig. 2. Average AUC with feature selection and WW sampling prior to ranking.

Wrapper-Based Feature Ranking Techniques 439

the data, and both classifier and ranker aid are either NB or MLP, there is an
improvement in the classification performance with feature selection. In contrast,
feature selection does not benefit from oversampling when kNN is the common
learner. Also, feature selection benefits tremendously from oversampling when
both the ranker aid and classifier are either SVM or LR.

e With ROS sampling prior to feature selection and different algorithms for
ranker aid and classifier, NB is the only learner for which feature selection ben-
efits from both non-sampled and sampled training datasets.

e SMOTE has a negative effect on the feature selection classification performance
with kNN being the common learner and a positive effect when either MLP or
LR is the common learner. Also, with SMOTE the difference between common
and different learner case is negligible.

e Overall, with NB as the classifier, wrapper-based feature ranking benefits from
RUS whether the ranker aid is same or different and whether we use the sampled
or non-sampled training dataset.

e With WW and common algorithm case, the classification performance with fea-
ture selection on both learners NB and MLP is enhanced over the benchmark with
all features. Once again, the results show inadequate performance when feature
selection is combined with kKNN. With WW and different algoritm case, there is no
significant improvement with feature selection, except when the classifier is MLP.

4.3. LLTS: ANalysis Of VAriance (ANOVA)

4.3.1. ANOVA test and multiple comparisons for LLTS
non-sampled datasets

A four-way ANOVA test is performed for the prediction results obtained from LLTS
non-sampled datasets. The four main effects include Factor RA (Ranker Aid), in
which five learners are considered, Factor PM (Performance Metric), in which nine
different performance metrics are included, Factor TM (Training Method), which
include three approaches, and Factor LE (Learner), in which five classifiers are
considered. Although the five classifiers in the Learner factor are the same as those
in the RA factor, they play different roles during the data mining process. The
interaction effects of two factors are also considered in the ANOVA test.

An n-way ANOVA test can be used to determine whether the means in a set of
data differ when grouped by multiple factors. If they do differ, one can determine
which factors or combinations of factors are associated with the difference. The
ANOVA model can be used to test the hypothesis that the AUC for the main
factors RA, PM, TM and LE and/or for their paired interactions are equal against
the alternative hypothesis that at least one mean is different. If the alternative
hypothesis is accepted, multiple comparisons can be used to determine which of
the means are significantly different from the others. In this study, we perform the
multiple-comparison tests using Tukey’s Honestly Significant Difference criterion.
All tests utilize a significance level o = 0.05.

440 W. Altidor, T. M. Khoshgoftaar & K. Gao

Table 6. ANOVA for LLTS non-sampled datasets.

Source Sum sq. d.f. Mean sq. F p-value
PM 1.0414 8 0.1302 43.02 0.000
RA 0.2314 4 0.0578 19.12 0.000
T™ 0.0374 2 0.0187 6.18 0.002
LE 8.3495 4 2.0874 689.86 0.000
PMxRA 0.5752 32 0.0180 5.94 0.000
PMxTM 0.1422 16 0.0089 2.94 0.000
PMxLE 0.3392 32 0.0106 3.50 0.000
RAXTM 0.2263 8 0.0283 9.35 0.000
RAXLE 0.7106 16 0.0444 14.68 0.000
TMxLE 0.0535 8 0.0067 2.21 0.024
Error 5.7309 1894 0.0030

Total 17.4375 2024

The four-way ANOVA results for LLTS are presented in Table 6. From this
table, we can see that the p-values (last column of the table) for the main factors
RA, PM, TM and LE and their paired interaction terms are less than a typical
cutoff 0.05. This indicates that the classification performances in terms of AUC,
are not the same for all groups in each of these factors or terms. In other words, the
classification performances are significantly different from each other for at least a
pair of groups in the corresponding factors or terms.

We further conduct multiple comparisons for the main factors and some of their
interactions that are the main concerns for this paper. The objective of multiple
comparisons is to identify the means that significantly differ from others. Our anal-
ysis is on both the main factors and some relevant interactions; however, only the
test results for the main factors are shown in Fig. 3. Each group mean is rep-
resented in each graph by a symbol (o) and 95% confidence interval around the
symbol. Two means are significantly different if their intervals are disjoint, and are
not significantly different if their intervals overlap. The results show the following
points.

e For Factor RA (Fig. 3(a)), NB as ranker aid presents superior performance while
kNN demonstrates inferior performance.

e For Factor PM (Fig. 3(b)), OA demonstrates poorest performance, while AUC,
PRC, BFM, BGM and BAM demonstrate superior performance to FM, GM, and
AM with the decision threshold 0.5.

e For Factor TM (Fig. 3(c)), the CV and COMBO methods presented significantly
better performance than the CV-R approach. In addition, CV is preferred over
COMBO, if computational complexity is a factor.

e For Factor LE (Fig. 3(d)), SVM demonstrates worst performance among the
five learners while NB, MLP, and LR perform best and kNN shows moderate
performance.

e For Interaction PM xRA, 45 groups, obtained when the nine performance metrics
are used in conjunction with five ranker aids, are presented. The performance of

Wrapper-Based Feature Ranking Techniques 441

Factor RA Factor PM
NB —e— OAF —o—
FM ——
MLP —e GM ——
AM ——
kNN | —e— AUC ——
PRC | ——
SVM — BFM ——
BGM | ——
LR — BAM | ——
0.74 0.75 0.76 0.77 0.78 0.79 0.7 0.72 0.74 0.76 0.78 0.8
(a) RA (b) PM
Factor TM Factor Learner
NB | °
cv e
MLP | °
CV-R — kNN °
SVM e
CBO —
LR 4
0.745 0.75 0.755 0.76 0.765 0.6 0.65 0.7 0.75 0.8 0.85
(¢) T™M (d) LE

Fig. 3. Multiple comparisons for LLTS non-sampled data — main factors.

each ranker is determined by the two factors (RA and PM) and/or their inter-
action term. Given the p-value in the ANOVA test for this pair-wise interaction
term is less than 0.05, changing the value of one factor will significantly impact
the mean values of the other factor, or vice versa. Generally, when the rankers are
created with the AUC, PRC, BFM, BGM and BAM performance metrics aided
by the NB learner, they present better performance than the rankers formed by
different performance metrics and/or different learners.

e For Interaction RAXLE, 25 groups (five ranker aids by five classifiers) are formed.
The interaction effect significantly influences the classification results. Another
interesting question is — “when ranker aid and classifier shares the same learning
algorithm, is there any improvement for the performance compared to the case
where different learning algorithms are used in the two processes?” The observa-
tion demonstrates that on average no significant difference is found between the
performances from the two cases.

442 W. Altidor, T. M. Khoshgoftaar & K. Gao

4.3.2. ANOVA test and multiple comparisons for LLTS sampled datasets

We perform a six-way ANOVA test for the performance results obtained from LLTS
sampled datasets. The six main effects include the same four factors as presented in
the non-sampled case. Besides, two more factors are also taken into account. One is
Factor TS (Training data Source), in which two different scenarios are considered,
and the other one is Factor ST (Sampling Technique), in which seven data sam-
pling methods are included. The pairwise interaction effects are also considered in
the ANOVA test. The ANOVA results are presented in Table 7 for LLTS datasets.
From the table, we can see that the p-values for all main factors TS, ST, RA, PM,
TM and LE, and all pairwise interactions are less than the cutoff 0.05.

We further conduct multiple comparisons for all main factors and some of their
interactions that are the main concerns for this paper. We add four more multiple
comparisons, two for main factors: TS and ST, and two for interactions: PMxTS
and STxTS, compared to the multiple comparisons worked on the non-sampled
case. The results and findings are summarized as follows.

e For Factor TS (Fig. 4(a)), the classification models built based on the training
dataset that is extracted from the sampled version (denoted S in the figure)
of the original dataset demonstrate significantly better performance than those
built based on the training dataset that is extracted from the non-sampled version
(denoted NS in the figure).

Table 7. ANOVA for sampled LLTS datasets.

Source Sum sq. d.f. Mean sq. F p-value
TS 7.7294 1 7.7294 3158.39 0
ST 1.3869 6 0.2312 94.45 0
PM 0.2318 8 0.0290 11.84 0
RA 0.2306 4 0.0576 23.55 0
T™ 1.2708 2 0.6354 259.64 0
LE 41.6490 4 10.4122 4254.63 0
TSxST 0.6503 6 0.1084 44.29 0
TSxPM 0.0390 8 0.0049 1.99 0.043
TSxRA 0.0860 4 0.0215 8.78 0
TSxTM 0.1963 2 0.0981 40.10 0
TSxLE 32.1185 4 8.0296 3281.06 0
STxPM 0.8523 48 0.0178 7.26 0
STxRA 0.9829 24 0.0410 16.73 0
STxTM 0.1378 12 0.0115 4.69 0
STxLE 1.9407 24 0.0809 33.04 0
PMxRA 0.8588 32 0.0268 10.97 0
PMxTM 0.1968 16 0.0123 5.03 0
PMxLE 0.1953 32 0.0061 2.49 0
RAXTM 0.1760 8 0.0220 8.99 0
RAXLE 0.1899 16 0.0119 4.85 0
TMxLE 0.5703 8 0.0713 29.13 0
Error 68.7194 28080 0.0024

Total 160.4086 28349

Wrapper-Based Feature Ranking Techniques 443
Factor TS Factor ST
RUS35 —— E
NS ° { RUS50 —— E
S35 —— E
S50 —— E
ROS35 —— E
s - { ROS50 —— E
ww —— E
0.76 0.77 078 0.79 0.8 0.81 0.77 0.78 0.79 0.8
(a) TS (b) ST
Factor Learner Factor RA
NB | o NB ——
MLP ° MLP —
kNN ° kNN ——
SVM e SVM ——
LR} ° LR ——
072 0.74 0.76 078 0.8 0.82 0.84 0.78 0.785 0.79
(c) LE (d) RA
Factor PM Factor TM
OA —
cv —e—
FM —
GM —
AM —
AUC — CV-R [—o—
PRC —_—
BFM —_—
BGM —_—
CBO e
BAM —_—
0.775 078 0.785 0.79 0.795 0.775 0.78 0.785 0.79 0.795 0.8
(e) PM (f) T™M

Fig. 4.

Multiple comparisons for sampled data — main factors.

444 W. Altidor, T. M. Khoshgoftaar & K. Gao

e For Factor ST (Fig. 4(b)), the SMOTE data sampling technique demonstrated
superior performance to the other sampling techniques in most cases, and Wil-
son’s method presents poorest performance among the seven techniques. Also,
for a given sampling method, the ratio of 65-to-35 between the negative and
positive instances in the post sampling dataset demonstrates better or similar
performance to the case in which 50-to-50 is used.

e For Factor RA (Fig. 4(d)), the NB learner still presents superior performance,
and kNN shows the worst performance. This is similar to the non-sampled case.
However, when comparing the Factor RA in the sampled and non-sampled cases,
one can find the classification results are different in terms of AUC. For the
sampled case, the values of AUC fall into the range of 0.78 to 0.79 compared to
the AUC range of 0.74 to 0.78 for the non-sampled case. This demonstrates that
the sampled data influences the ranker aid’s performance.

e For Factor PM (Fig. 4(e)), OA does not demonstrate poorest performance like
in the non-sampled case. Also, AUC, PRC, BFM, BGM and BAM do not per-
form superiorly to FM, GM, and AM. This can be explained by the fact that
traditional classification algorithms always use the performance metrics such as
FM, GM, and AM with the decision threshold 0.5. This threshold may be appro-
priate when distributions of positive and negative examples in a given dataset
are equally balanced; however, it results in a large number of mis-classifications
from positive to negative class when a training dataset is imbalanced. Because
sampling balances the class distribution, the performance of classification models
built with the sampled training dataset will not deteriorate when using perfor-
mance metrics with the decision threshold 0.5 such as OA, FM, GM, and AM
during the modeling process.

e For Factor TM (Fig. 4(f)), we reach a similar conclusion as we did for the non-
sampled case. That is, the CV and COMBO methods perform significantly better
than the CV-R method. For the sampled case, though, the COMBO method is
better than the CV one.

e For Factor LE (Fig. 4(c)), we make the same observations as we did for the non-
sampled case. NB, MLP and LR demonstrate superior performance among the
five learners. SVM performs worst, and kNN is moderate.

e For Interaction TSxST, 14 groups are formed by seven data sampling techniques,
each using two different training data sources, sampled and non-sampled versions
of the original dataset. The results demonstrate that the sampled version perform
significantly better than the non-sampled version for all the sampling techniques
over the LLTS datasets.

e For Interaction TSxPM, which consists of 18 groups formed by nine perfor-
mance metrics, each involved in two different training data sources, sampled and
non-sampled versions of the original dataset. The results demonstrate that perfor-
mance of each group is determined by the two main factors (PM and TS) making
up the groups. In addition, for the two training data sources, the sampled version

Wrapper-Based Feature Ranking Techniques 445

performed significantly better than the non-sampled version for all performance
metrics over the LLTS datasets.

e For Interaction RAXPM, 45 groups (rankers) are obtained. The performance of
each ranker is determined by the two factors (RA and PM) and their interaction.
Generally, the NB-aided rankers presented better performance than the rankers
formed by the performance metrics aided by different learners.

e For Interaction RAXLE, 25 groups are formed. The interaction effect still sig-
nificantly influences the classification results. The same question as raised in the
non-sampled case is — “when ranker aid and learner shared the same learn-
ing algorithm, is there any improvement for the performance compared to the
case where the different learning algorithms are used in the two processes?”.
This demonstrates that on average no significant difference is found between the
performances from the two cases. However, it can be clearly observed that the
performance of classification models is more influenced by the selected classifier
than by the ranker aid.

5. Experimental Results: Eclipse

For Eclipse, the models are constructed and tested within the same minority class
distribution group (see Sec. 3.3.2). For instance, we construct a model using release
2.0 from the first distribution group, and we evaluate the models on both releases
2.1 and 3.0 within the same distribution group. We denote the distribution groups
as Eclipse-1, Eclipse-2, and Eclipse-3 respectively (see Table 4).

Researchers exploring feature selection techniques usually aim at finding subsets
of the attributes that retain if not enhance models’ predictability power. As a
baseline for comparison, we build different models with all the attributes of the
training datasets and evaluate them on the corresponding test datasets. Table 8
depicts the performance results in terms of AUC for all attributes selection; it
shows the average AUC values according to the classifier and sampling technique
(including No Sampling denoted by NS). These values are obtained for NB, MLP,
kNN, SVM, and LR respectively.

5.1. Eclipse: No sampling and feature selection

All experiments with the Eclipse datasets use three training datasets to build the
models, and two test datasets for each model are used for model evaluation. Now, to
build the models, we need to select a subset of the features. In the experiments with
Eclipse, the size of the feature subset is obtained from [log, 208] where 208 represent
the number of independent features in the original Eclipse datasets. Thus, the top
eight features are selected from each ranking. Similar to LLTS, the experiments are
conducted with generally two perspectives in mind, no-sampling and sampling.
Here we address the no-sampling case, and we aim at characterizing the impact
of feature selection using wrapper-based feature ranking techniques on the models’
predictive powers. With no sampling of the training datasets, 2.0, we apply the

446 W. Altidor, T. M. Khoshgoftaar & K. Gao

Table 8. Eclipse — Average classification performance with all attributes in terms of AUC for
all sampling.

Learner Group NS RUS35 RUS50 ROS35 ROS50 S35 S50 Ww

NB Eclipse-1 0.8494 0.8322 0.8127 0.8492 0.8495 0.8470 0.8661 0.8494
Eclipse-2 0.8450 0.8398 0.8326 0.8434 0.8444 0.8474 0.8427 0.8443
Eclipse-3 0.7700 0.7675 0.7717 0.7665 0.7681 0.7708 0.7640 0.7732

MLP Eclipse-1 0.8369 0.8136 0.8117 0.8459 0.8879 0.8745 0.8821 0.8682
Eclipse-2 0.8450 0.8314 0.8345 0.8329 0.8369 0.8164 0.8272 0.8467
Eclipse-3 0.8090 0.8047 0.7820 0.8061 0.7926 0.8082 0.7905 0.8026

kNN Eclipse-1 0.8233 0.8341 0.8578 0.8159 0.8163 0.8388 0.8260 0.8233
Eclipse-2 0.8165 0.8041 0.8118 0.8153 0.8067 0.8291 0.8239 0.8153
Eclipse-3 0.8180 0.8148 0.8031 0.8063 0.8113 0.8158 0.8080 0.8141

SVM Eclipse-1 0.8240 0.8055 0.7711 0.7702 0.7701 0.7692 0.7702 0.8238
Eclipse-2 0.8203 0.8147 0.7959 0.8080 0.8033 0.8113 0.8092 0.8250
Eclipse-3 0.7906 0.8197 0.7889 0.7786 0.7991 0.7906 0.8000 0.8152

LR Eclipse-1 0.6943 0.7042 0.6329 0.6076 0.6502 0.6068 0.6068 0.6943
Eclipse-2 0.7138 0.6526 0.5872 0.6743 0.6564 0.6824 0.6824 0.6645
Eclipse-3 0.6590 0.6811 0.6873 0.6535 0.6666 0.6623 0.6623 0.6954

wrapper-based ranking techniques and build corresponding models with feature
selection. These models are evaluated using the test datasets, releases 2.1 and 3.0
(again within the same class distribution).

Considering the average performance results in terms of AUC, we can observe
that the classification performance is generally enhanced with feature selection,
and this is so whether we use common learner or different learners for ranker aid
and classifier. For the first class distribution group, feature selection from wrapper-
based ranking is enhanced about 90% and 84% of the cases for same and different
learner respectively. For the second group, about 77% of the time, feature selection
is enhanced for both cases. Finally, for the third group, enhancement is shown about
83% and 78% of the time, respectively. These results show the power of our proposed
wrapper-based feature ranking. Strongly relevant features are ranked first, allowing
a subset with less than 5% of the features to retain the models’s predictive power.
This implies that a large portion of the feature space is irrelevant while proving the
soundness of our method for defining feature relevancy.

5.2. Eclipse: Sampling effect

Continuing our experiments with the Eclipse datasets, we now investigate whether
sampling has any effect on wrapper-based ranking and subsequently on the classifi-
cation with feature selection from the produced ranking. We choose the same seven
sampling techniques as described in Sec. 3.7.

For each class distribution grouping, we apply all the sampling techniques on
the training dataset (Package Release 2.0). This preprocessing step results in 21
new data structures. For each of these new data structures, we obtain 135 rankings

Wrapper-Based Feature Ranking Techniques 447

by applying the wrapper-based feature ranking techniques (each ranking technique
represents a combination of a ranker aid, a Performance Metric, and a Methodol-
ogy). Thus, we obtain a total of 2835 rankings.

Similar to the non-sampling case, the top eight features are selected from each
ranking. Once all the feature subsets are identified, we construct two sets of mod-
els. On one hand, we build the models with feature selection from the non-sampled
dataset. On the other hand, we use the sampled dataset as our training dataset
for building the models with feature selection. In each case, the models are evalu-
ated with the corresponding test datasets (Releases 2.1 and 3.0). The classification
performance results in terms of AUC are computed. Before comparing the classi-
fication performance of the models — those with feature selection and sampling
applied prior to building the models and those with no feature selection and data
sampling — we aggregate the evaluation results into two categories. First, we aver-
age the AUC values when a common learner is used for both the ranker aid and
the classifier. Second, the average is taken on the AUC values when the ranker aid
is different from the classifier.

Table 9 shows the percentage of cases where models built with feature selection
are same as or better than those without feature selection, in terms of their clas-
sification performance (AUC). We report the results with respect to the sampling
technique (indicated in the first column), whether the ranker aid and classifier use
same or different learner, and whether the sampled or non-sampled data structure is
used to train the models. For instance, for ROS35, we observe that when the learner
is common for ranker aid and classifier, 80% and 78% of the time, feature selec-
tion outperforms no feature selection for sampled and non-sampled training data
respectively. For the same sample technique but different learner for ranker aid and
classifier, the two values are 83% and 81% respectively. As we can see, the patterns
are the same whether a common or a different learner than the ranker aid is used
for classification.

When we consider sampling prior to applying the wrapper-based feature rank-
ing techniques and when we use the same learner as both the ranker aid and the

Table 9. Eclipse — Percent of feature selection cases that out-
perform no feature selection.

Common learner Different learner

Keep sampling Keep sampling
ST No (%) Yes (%) No (%) Yes (%)
ROS35 80 78 83 81
ROS50 85 85 83 83
S35 90 90 86 88
S50 84 85 86 86
RUS35 86 83 85 81
RUS50 79 70 78 71

WwW 83 84 85 86

448 W. Altidor, T. M. Khoshgoftaar & K. Gao

classifier, the experimental results show that generally sampling improves the aver-
age classification performances whether the training source is the sampled or non-
sampled data. The enhanced classification performance due to sampling is observed
whether we use common learner or different learners for ranker aid and classifier.

5.3. Eclipse: ANalysis Of VAriance (ANOVA)

5.3.1. ANOVA test and multiple comparisons for eclipse
non-sampled datasets

Similar to LLTS ANOVA test and multiple comparisons for Non-sampled datasets, a
four-way ANOVA test is performed for the prediction results obtained from Eclipse
non-sampled datasets. We consider the same four main effects and the same inter-
action effects of two factors. Also for the Eclipse tests, we performed the multiple
comparison tests using Tukey’s Honestly Significant Difference criterion, and all
tests utilize a significance level a = 0.05.

The Eclipse ANOVA results are presented in Table 10, where three subtables
are included, each representing the four-way ANOVA results for each group of
Eclipse datasets. We can observe that the p-values (last column of the tables) for
the main factors RA, PM, TM and LE and their paired interaction terms are less
than a typical cutoff 0.05 in most cases, especially for Eclipse-1 and Eclipse-2. This
indicates that the classification performances are significantly different from each
other for at least a pair of groups in the corresponding factors or terms. The factors
or terms with p-values greater than 0.05 (highlighted with boldface in the tables)
indicate that their group means are the same or at least not significantly different
from each other.

As in the LLTS case, only the test results for the multiple comparisons for the
main factors (See Figs. 5 to 8) are shown here even though some interactions that
are the main concerns for this paper are included in the discussion below. The
figures shown include three subfigures each, representing the results from the three
groups of Eclipse datasets, respectively. The results show the following points.

e For Factor RA (Fig. 5), no consistent conclusion can be drawn over all three
groups of Eclipse datasets. However, the NB and SVM learners generally
present superior performance while kNN and LR generally demonstrate inferior
performance.

e For Factor PM (Fig. 6), OA consistently demonstrates poorest performance, while
AUC, PRC, BFM, BGM and BAM generally demonstrate superior performance
to FM, GM, and AM with the decision threshold 0.5.

e For Factor TM (Fig. 7), the CV and COMBO methods present significantly
better performance than the CV-R approach. In addition, CV is recommended
compared to COMBO, if computational complexity is considered as a factor. This
conclusion is true for all three groups of datasets.

449

Wrapper-Based Feature Ranking Techniques

6V€1 0€67°€ [®10L 6V€T 86CV'E [®10L 6v€T 9610°¢ [®10L
G000'0 6TCT9984°0 0L 80000 61¢T 0086°0 IO ¢100'0 61cT VI9P'L 0L
0000 L9°6L €8€0°0 8 190€°0 HTXINL 0000 S¢'9e €0c00 8 yeor'0 HTIXINL 0000 €6°L G600°0 8 19400 HTXNL
0000 09°¢ L2000 9T 0€V0°0 HTIXVYH 0000 86'C ¥¢00°0 91 ¥8€0°0 HTIXVYH TG00 991 0c00°'0 91 91€0°0 HTIXVY
€000 16°C ¥100°0 8 ¢I10'0 NLXVY 0000 ##'¥1 91100 8 6¢60°0 INLXVYH 0000 6¢°G €9000 8 L0S0°0 INLXVY
9.€°0 90T €000°'0 ¢& €910°0 HTIXINd TS0°0 Sv'1 ¢1000 ¢& €LE0°0 HTIXINd 8%L'0 ¢80 01000 ¢¢ G1e€0'0 HIXINd
9¢0°0 1I8°1T 60000 9T 6€10°0 WLXINd 0000 06% 6€00°0 9T 0€90°0 INLXINd 0000 €2'€ 6€00°0 9T 0290°0 INLXINd
¢S0'0 Sv'1 L000°0 ¢& ¢cc0'0 VIXINd 0000 007 ce00'0 ¢t 8¢0T'0 VUXINd 0000 L¥'S 99000 ¢& 8600 VUXINd
0000 70'8€CT 9¥65°0 ¥ ¥8LE'C dT 00000 08°96¢ 98€C0 ¥ ¥¥56°0 dT 0000 98°6¢T 60ST°0 ¥ G€09°0 dT
0000 G¢'9TT 89500 ¢ LITTO L 0000 T¥'99¢ €970 ¢ L016°0 INL 0000 6€€0l 07¢l'0 ¢ 6.7C°0 L
VIL0 €50 €000°0 ¥ 010070 vd 0000 ¢8ST LgI00 ¥ 6050°0 vd 0000 8v'€c 1800 ¥ 9¢1T°0 vd
SSP°0 L6°0 ¢000'0 8 LE€O00 INd 0000 8L'G 97000 8 ¢LEO0 INd 0000 ¢8€l 99100 8 Gcero INd
onfea-d ‘bs ues|y ‘Jp ‘bs wing eoinog enfea-d 4 bsueely ‘Jp ‘bswng eoinog enea-d 4 bsuesy ‘Jp ‘bswng eoinog

g-osdioy (9) g-osdippy (q) 1-osdipoy ()

‘sjosejep pordures-uou osdrpy 10] VAONV 0T °[qel,

450 W. Altidor, T. M. Khoshgoftaar & K. Gao

Factor RA Factor RA
NB —e— NB —e—
MLP — MLP —_—
kNN — kNN —_—
SVM — e SVM —i e
LR — LR —_—
0.86 0.87 0.88 0.89 0.9 0.91 0.865 0.87 0.875 0.88 0.885 0.89 0.895 0.9
(a) Eclipse-1 (b) Eclipse-2
Factor RA
NB
MLP
kNN
SVM
LR
0.836 0.838 0.84 0.842 0.844 0.846

(¢) Eclipse-3

Fig. 5. Multiple comparisons for Eclipse non-sampled data — factor RA.

e For Factor LE (Fig. 8), NB demonstrates worst performance among the five
learners, and SVM performed best. Among the three moderate learners, MLP
and LR presented better performance than kNN.

e For Interaction PMxRA, which includes 45 groups (rankers), OA on average is
significantly worse than other performance metrics for Eclipse-1, but this may not
be true for a particular ranker aid. For instance, when using SVM as a ranker aid,
at least three performance metrics (FM, GM, and AM) are not as good as the
OA performance metric. Generally, when the rankers are created with the AUC,
PRC, BFM, BGM and BAM performance metrics aided by the NB, MLP or
SVM learner, they show better performance than the rankers formed by different
performance metrics and/or different learners.

e For Interaction RAXLE, 25 groups are formed. The p-value of the pairwise inter-
action is greater than 0.05 for Eclipse-1, implying that the performance of each
group is determined by the two main effects (RA and LE) but not by their
interaction. However, For Eclipse-2 and Eclipse-3, the interaction RAXLE also

Wrapper-Based Feature Ranking Techniques 451

Factor PM Factor PM
OAF——o—— b OAF —_——
FM} ———— g FMF —_———
GMf —_— b GM —o—
AME ——— E AME ————
AUCH —_— 1 AUCK —_——
PRC —_— i PRCf —_—
BFM|- — { BFM| RN
BGM[- — 1 BGM[—_—
BAMF — 1 BAM[—_—
0.85 0.‘86 0.é7 O.éB 0.‘89 019 0.91 0.865 0.é7 0.575 O.‘88 0.685 0.‘89 0.595 0.9
(a) Eclipse-1 (b) Eclipse-2
Factor PM
OA
FM
GM
AM
AUC
PRC
BFM
BGM
BAM
0.835 0.84 0.845

(c¢) Eclipse-3

Fig. 6. Multiple comparisons for Eclipse non-sampled data — factor PM.

significantly influences the performance of each group. Moreover, there is no
strong evidence of performance improvements when ranker aid and classifier share
the same learning algorithm compared to the different learning algorithms case.
This conclusion is similar to the first case study.

5.3.2. ANOVA test and multiple comparisons for Eclipse
sampled datasets

A six-way ANOVA test is performed for the prediction results obtained from Eclipse
sampled datasets. The six main effects include the same four factors as presented in
the non-sampled case. Besides, two more factors are also taken into account. One is
Factor TS (Training data Source), in which two different scenarios are considered,
and the other one is Factor ST (Sampling Technique), in which seven data sampling
methods are included. The pairwise interaction effects are also considered in the
ANOVA test.

452 W. Altidor, T. M. Khoshgoftaar & K. Gao

Factor TM Factor TM
CcV —— cVv ——
CV-R — CV-R[——
CBO —— CBO ——
0.85 0.86 0.87 0.88 0.89 0.9 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91
(a) Eclipse-1 (b) Eclipse-2
Factor TM
cv ——
CV-Rf—e—
CBO| o

0.825 0.83 0.835 0.84 0.845 0.85 0.855

(c) Eclipse-3

Fig. 7. Multiple comparisons for Eclipse Non-sampled Data — Factor TM.

The ANOVA results are presented in Table 11 for Eclipse datasets. From the
tables, we can see that the p-values for all main factors TS, ST, RA, PM, TM and
LE, and most pairwise interactions are less than the cutoff 0.05. The three excep-
tions (p > 0.05) in each group of Eclipse datasets came from interactions TSxPM,
TSxRA, and TSxTM (except for TSxTM in Eclipse-1). Thus, the performance of
the classification is greatly influenced by all the factors and their pairwise interac-
tions except for TSXxPM, TSxRA, and TSxTM.

We further conduct multiple comparisons for all main factors and some of their
interactions that are the main concerns for this paper. As we did for the LLTS
experiments, we add four more multiple comparisons, two for main factors: TS and
ST, and two for interactions: PMxTS and ST TS, compared to the multiple com-
parisons worked on the non-sampled case. The results and findings are summarized
as follows.

e For Factor TS (Fig. 9), the classification models built based on the train-
ing dataset that is extracted from the sampled version of the original dataset

Wrapper-Based Feature Ranking Techniques 453

Factor Learner Factor Learner
NB —e— B NB! —e—
MLP —— 1 MLP —o—
kNN —— 1 kNN ——
SVM —— 1 SVM —— A
LR —— 1 LR ——
083 084 085 08 087 0.88 0.89 0.9 0.91 0.82 0.84 0.86 0.88 0.9 0.92
(a) Eclipse-1 (b) Eclipse-2
Factor Learner
NBf &=
MLP o
kNN o
SVM o
LR -

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9

(c) Eclipse-3

Fig. 8. Multiple comparisons for Eclipse non-sampled data — factor LE.

demonstrate significantly better performance than those built based on the train-
ing dataset that is extracted from the non-sampled version. This is true for
Eclipse-2 and Eclipse-3. For Eclipse-1, the contrary results are obtained.

e For Factor ST (Fig. 10), the SMOTE data sampling technique demonstrate supe-
rior performance to the other sampling techniques in most cases. Also, Wilson’s
method presents good performance for the Eclipse datasets — this is different
from the conclusion obtained from the LTS experiments.

e For Factor RA, no consistent conclusion can be drawn over all the Eclipse
datasets. This is similar to the non-sampled case (Fig. 5). Generally, the NB
learner presents superior performance.

e For Factor PM, OA did not demonstrate poorest performance like the non-
sampled case. Also, AUC, PRC, BFM, BGM and BAM did not always perform
superiorly to FM, GM, and AM with the decision threshold 0.5. This is an obser-
vation similar to that for LLTS.

454 W. Altidor, T. M. Khoshgoftaar & K. Gao

6688T 9T8L'99 [®30L 6688T TIEV GG TejoL 6688T CITL 9L [®30L
€T00°0 0€98T CI6L'ET Torry CI00°0 0€98T ¥099°'1¢C Torry €200°0 0€98T 8V.LT TV o1y
0 €89 Gcoeo 8 961v'c HTXINL 0 91'60T 69210 8 €9T10'T HTXINL 0 ¥vel @800 8 69¢¢'0 HTXINL
0 99'8¢ 99¢0°0 91 ¥€84°0 HTIXVYH 0 T9'8T GTe0'0 91 ¥rye'0 dIXVY 0 ¢&s9r 8¥e00 91 19690 HIXVY
0 6L'8CT <QLLTO 8 6LTV'T INLXVYH 0 €T°69T 99610 8 TELS'T INLXVY 0 0T'9TT L€9T0 8 G60T'C INLXVY
0 06°¢ GL00°0 ¢¢ 60¥¢°0 HTIXINd 0 ¢8'¢ ¥v00'0 ¢¢ 0gy1°0 HTIXINd 0 0c¢e 0%00°0 ¢¢ L6ST'0 HTXINd
0 S8¥VLT €2c00 9T TLGE'0 INLXINJ 0 20Tl 61100 9T ¢061°0 INLXINJ 0 ¥¢0rT ¢€e0'0 9T 8TLE'0 INLXINJ
0 9T'8T ¢€e0'0 ¢¢ 0ZvL'0 VUXINd 0 €vL 9800°0 ¢€ G9.2°0 VUXINd 0 ¢g9 v10°'0 ¢¢ 61S7°0 VUXINd
0 €¢L ¢600°0 V¢ 91¢c’0 HTXLS 0 L€'8 L6000 ¥¢ 9¢6¢’0 HTXLS 0 9T'¢l 9.200 V¢ 12990 HTIXLS
0 L0LT 8T200 @l 9192°0 INILXLS 0 6967 8.500 @l €€69°0 INILXLS 0 T190¢ 67VITO0O @I C8LE'T INLXIS
0 <9LvS 66900 VT 6LL9°T VYUXLS 0 8T'8¢ 91900 7¥¢ ¥€C9'T VUXLS 0 €T'6c 19900 7¥¢C €98G¢'T VUXIS
0 91°9T ¥6100 8V ¢6C6'0 INdXLS 0 T192L L800°0 8% 0617'0 INAXLS 0 €08 ¢8I0°0 8% I7.8'0 INdXLS
0 9.L9¢ 0Lv00 ¥ 8L81°0 HTXSL 0 6L¢c 99200 ¥ 0901T°0 HTXSL 0 6099 LVTO ¥ 8069°0 HTXSL
190°0 08¢ 9¢00'0 ¢ TL00°0 INLXSIL 6260 €00 00000 ¢ 1000°0 INLXSIL ¥00'0 67’9 GeI00 ¢ 67C0°0 INLXSL
665°0 690 60000 ¥ Ge00'0 VUXSL 6€¥'0 ¥60 11000 ¥ 7P00'0 VUXSL €99°0 9270 L1000 ¥ 6900°0 VHUXSL
§66'0 LT°0 c000'0 8 LTO00 INXSL 996°0 0€0 €000°0 8 8¢00°0 INAXSL L¥80 1S90 ¢100'0 8 €600°0 N XSL
0 ¢€vé6 0¢I0'0 9 ¢clL0'0 LSXSL 0 L0'8 76000 9 €960°0 LSXSL 0 0v'69 GLST0 9 6776°0 LSXSL
0 9,026V 0¥V8C9 ¥ 09€1°49¢ a1 0 61'89LT 84%0C ¥ €€Te’'8 a1 0 O0T'T1T9¢ ©¢eLcT ¥ 0€60°9 d1
0 gc€Tve 9760°€ © 6819 NL 0 €T'T99L LG68'S © VI6L LT L 0 €8°€6€¢ CIOLL © ¥eov a1 INL
0 6€091T 8¥0C0 ¥ €618°0 vd 0 PpeesT 08910 ¥ 1029°0 vd 0 Le'cg 88IT0 ¥ YeLY0 vd
0 908y ¥I900 8 0167°0 Nd 0 €121 w100 8 8CTT°0 Nd 0 P84T 69€00 8 GL8T'0 Nd
0 T9'8ST 920C0 9 €4T1C'T LS 0 ¢€9¥ 6€900 9 ¥€2€0 LS 0 L9'89T Gg8€0 9 1962°C LS
0 PCE€T 69100 T 69T0°0 SL 0 ¥89T 96100 T 96T0°0 SL 0 8L9Tv 84760 T 8G¥6°0 SL
onyea-d A ‘bs ueoyy 'Jp bs wming 90In0g onpea-d A ‘bs ueojyy 'pp bs wming 20Inog onpea-d A ‘bs ueojy Jp bs ming edinog
g-osdipy (0) g-osdipy (q) 1-osdipy (e)
‘syesejep osdroy pordures 10} YAONV 1T 9l9BL

Wrapper-Based Feature Ranking Techniques 455

Factor TS Factor TS
NS —— 1 NSF ————

S —o— S [N
0.855 0.86 0.865 0.87 0875 0.874 0.8745 0.875 0.8755 0.876 0.8765 0.877 0.8775
(a) Eclipse-1 (b) Eclipse-2
Factor TS

NS —m——
S —_—

0.8275 0.828 0.8285 0.829 0.8295 0.83 0.8305 0.831

(c) Eclipse-3

Fig. 9. Multiple comparisons for sampled data — factor TS.

e For Factor TM, we obtain the same conclusions as we did for the non-sampled
case. That is, the CV and COMBO methods perform significantly better than
the CV-R method. However, CV is recommended compared to COMBO due to
its less computational complexity.

e For Factor LE, we have the same conclusions as we did for the non-sampled case.
For all three groups of Eclipse datasets, SVM demonstrates the best performance
among the five learners, and NB performs worst. Of the three moderate learners,
MLP and LR outperformed kNN.

e For Interaction STxTS, the results demonstrate that the sampled version per-
formed better or significantly better than the non-sampled version for five out of
seven sampling techniques over the Eclipse-2 and Eclipse-3 datasets. The oppo-
site conclusion was obtained for the Eclipse-1 datasets. That is, the non-sampled
version performed better than or equal to the sampled version for all the sampling
techniques.

456 W. Altidor, T. M. Khoshgoftaar & K. Gao

Factor ST Factor ST
RUS35 —o— RUS35 ——
RUSS50[—— RUS50 ——

S35 —— S35 ——

S50 —— S50 ——
ROS35F —o— ROS35! ——
ROS50F —o— ROS50! ——

WW[—o— Ww ——

0.85 0.‘86 OA‘87 0.‘88 0.59 0.9 0.865 0.é7 O.é75 0.‘88 0.8‘85 0.89
(a) Eclipse-1 (b) Eclipse-2
Factor ST
RUS35f —e—
RUS50[——
S35 ——
S50 —o—
ROS35 —o—
ROS50F —e—
WWH ——

0.81 0.815 0.82 0.825 0.83 0.835 0.84 0.845

(¢) Eclipse-3

Fig. 10. Multiple comparisons for sampled data — factor ST.

e For Interaction PMx TS, the results demonstrate that performance of each group
is determined by the two main factors (PM and TS) making up the groups,
not their interaction. In addition, for the two training data sources, the non-
sampled version performed significantly better than the sampled version for all
performance metrics over the Eclipse-1 datasets. For Eclipse-2 and Eclipse-3,
the sampled version performs better than the non-sampled version for all the
performance metrics but not by much.

e For Interaction RAxPM, the performance of each ranker is determined by the
two factors (RA and PM) and their interaction. Generally, the NB-aided rankers
present better performance than the rankers formed by the performance metrics
aided by different learners.

e For Interaction RAXLE, the classification performances are determined by the
two main effects (RA and LE) and their interaction. In other words, a change in
RA values greatly affects the mean values of the Learner groups. This is similar
to the non-sampled case. Furthermore, there is no evidence that the common
learning algorithm case is always better than the different learning algorithm case.

Wrapper-Based Feature Ranking Techniques 457

6. Analysis

At the foundation of our proposed wrapper-based feature ranking techniques are
the ranker aid, the performance metric and the methodology. The performance of
these techniques naturally depend on the three components. Our experiments show
variation in the experimental results between LLTS and Eclipse. With Eclipse,
performance enhancement is observed most of the time on tested models after they
are built with feature selection obtained from wrapper-based feature ranking. This
is probably due to the large feature space of the original dataset that includes 209
attributes, resulting in a considerable number of redundant/irrelevant attributes
that may impair the performance of the classification models. While the experiments
show data dependencies with the techniques, they also depict the stability of NB
as a ranker aid. Several classification performance values are obtained in terms of
AUC, and feature selection with NB for the most part enhances the classification
performances. Conversely, given the poor performance of feature selection with
kNN compared to classification with all attributes, the use of kNN as either the
ranker aid or classifier is found to be ineffective.

Based on the experimental results, the CV and COMBO methods show signifi-
cantly better performance results than the CV-R approach. Furthermore, CV is the
preferred methodology for the wrapper-based feature ranking given its low compu-
tational complexity compared to the COMBO approach. In general, the approach
with the CV methodology leads to models built with feature selection that main-
tains if not enhances the model’s classification performance. For these reasons, CV
is our recommended approach.

6.1. “Best” attributes

The ability to predict early on in the software product development process any
software item that is judged fault-prone is of critical importance toward achieving
software quality improvement. Unless one knows which item is defective and needs
corrective measures, one cannot achieve improvement. Software metrics, which are
an integral part of the state-of-the-practice in software engineering, are intended to
help practitioners to evaluate, control and improve both software products and pro-
cesses. Clearly, the collection of software metrics are important. Equally important
if not more is their relevance.

Our experiments provide a new insight to how we may answer the question:
which software metrics are most useful for defect prediction? For software practi-
tioners, knowledge of which attributes are best in terms of their predictive power,
is fundamentally critical. Equipped with this knowledge, they can simplify their
repositories, rendering obsolete, metrics that are less informative and focusing on
the collection of metrics deemed relevant to the class.

With the numerous rankings obtained through the experiments conducted in
this study, we observe a wide variability among the rankings produced by the dif-
ferent wrapper-based feature ranking techniques. Despise the ranking variability,

458 W. Altidor, T. M. Khoshgoftaar & K. Gao

we observe that some features or attributes are more frequent than others with
respect to membership in the selected features. That is, for each attribute in the
feature space, we record a count of its presence in the selected attributes. It is
assumed that the best attributes appear most in the selected subsets. Thus, the
high frequency of an attribute in the selected subsets presupposes that it is most
useful in predicting the class label.

Figure 11(a) shows the frequency of all LLTS attributes. Given the generally
poor performance of the CV-R methodology, we consider only CV and COMBO.
For each methodology (CV and COMBO), we aggregate the total number of appear-
ances of each attribute in the top six attributes. We rank all attributes starting with
the one having the highest number of appearances to the one with the lowest. In
our analysis of these two rankings, we observe that both share the same five of the
top six attributes. Thus, we deduce that only these five are most useful, and they
are: Number of distinct include files (FILINCUQ), Number of different designers

350 300

—cv —cv
—CV-R —CVR
—— COMBO —_ COMBO

300

250 n

200

-

200

Frequency

Frequency
—
=
— |
=

WU
o s & s 2 1w 2w w % m w @ O 9 18 27 3 45 54 69 72 61 % %9 105 117 126 195 144 163 162 171 180 189 198 207
Attibutes Attributes
(a) LLTS (b) Eclipse-1
w0
—CV
400
—CV = CV-R
——CV-R ~— COMBO
— 300
350 COMBO
300 250
250 200
. 7
3 g
g | H
g g
3 200 g
H
Ig 150

150 I
100 L
100
l 50 ﬂ \

0 0
0 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180 189 198 207 0 9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180 189 198 207
Attributes Attributes.

(c¢) Eclipse-2 (d) Eclipse-3

Fig. 11. Eclipse — Attributes frequency.

Wrapper-Based Feature Ranking Techniques 459

making changes (UNQ_DES), Total number of changes to the code for any reason
(TOT_UPD), Maximum span of variables (VARSPNMX), and Base 2 logarithm of
the number of independent paths (LGPATH).

Indeed, a large number of distinct include files in a software system can be
problematic. One type of problems that may result from a large number of include
files is the multiple inclusion problem. That is, one include file includes another,
which includes the original include file. The hierarchies of these include files can
become very complex, making it hard for software programmers to understand
their inter-dependencies. Understandably, this characteristic of a software system
is an excellent indicator of its quality as demonstrated by our method on the
LLTS system. Likewise the number of different designers making changes is of
high relevance. As practitioners, we know software is bound to change. In general,
there are limitless possible causes of changes in software. Examples include but
not limited to feature enhancements and additions, bug fixes, etc. As software
evolves, not only does the number of changes increase, but so does the num-
ber of different programmers changing the software. However, the more individ-
uals there are making changes; the less likely that the design principles will be
retained. This without a doubt will affect the software quality. Our method rightly
identifies the total number of changes introduced in a software system through-
out its life cycle and the number of different designers making these changes as
very relevant software metrics for predicting quality. Our method also identifies
as relevant software metrics the maximum span of variables and the base 2 loga-
rithm of the number of independent paths. Undoubtedly, the longer the amount of
time variables are retained, the more prone they are for misuse, which potentially
affect the operation of the system. Finally, practitioners can have an indication
of the complexity of a software system by examining the number of independent
paths.

In a similar fashion, we can separate the “worst” features. A feature is considered
among the worst if it is among the least frequent of top feature membership. These
features are less useful in predicting the class label. For LLTS, the “worst” features
are: Number of knots (NNT) (Note that a “knot” in a control flow graph is where
arcs cross due to a violation of structured programming principles), and Execution
time of an average transaction on a system serving businesses (BUSCPU).

Figures 11(b)-11(d) show the frequency of all Eclipse attributes according to
each group. Like with LLTS, we consider only CV and COMBO to determine the
most relevant attributes. We analyze each attribute of Eclipse in terms of their
appearances in the top selected features. Considering all three groupings of Eclipse,
we note four features that are common to the top eight of all three groupings, so we
deem them of high importance (relevant). These are: Number of defects reported in
the last six months before release (PRE), Number of nodes in the abstract syntax
trees (SUM), Total count of the qualified name nodes (QualifiedName), and Total
count of the simple name nodes (SimpleName).

460 W. Altidor, T. M. Khoshgoftaar & K. Gao

The results show the pre-release defects attribute having a relatively high fre-
quency. This validates the high correlation between the number of pre-release and
post-release defects reported by Zimmermann et al.?! A defective instance is more
likely to have had a large number of pre-release defects. In other words, a software
item that is deemed of poor quality prior to release (due to a large number of
observed pre-release defects) is more likely to remain poor after release. Also, the
abstract syntax tree, which depicts a detailed representation of the source code,
is a very reliable and convenient way to analyze the static structures of a soft-
ware program. However, not all information in the tree, according to our results,
is relevant for predicting the quality of the software. We can observe only three
pieces of information from the tree that are relevant. The size of the tree, expressed
in the number of nodes, provides a good indication of fault-proneness. Another
relevant piece of information is the frequency of qualified name node types. A qual-
ified name represents the explicit reference to namespaces to which belongs the
corresponding object, function or variable. It distinguishes between multiple soft-
ware items with the same name belonging to different namespaces or packages,
thereby preventing name conflict/collision. The third relevant piece of information
is the frequency of the software items without the namespace or package, referred
to as simple name. The simple name, in some contexts, may be obscure. There-
fore, ambiguity is more likely to result from a higher frequency of simple name.
Conversely, the more names that are fully qualified, the less ambiguity there is.
The results also show the “worst” features of Eclipse, those that lack predictive
power, and they are the normalized abstract syntax tree nodes. These attributes
have no relevant information for determining the fault-proneness of a software
item.

To validate our findings, we build models with only the “best” attributes, and we
evaluate them on the corresponding test datasets. Table 12 shows the results with
the “best” LLTS attributes (FILINCUQ, UNQ DES, TOT UPD, VARSPNMX, and
LGPATH). Table 13 shows the results with the “best” Eclipse attributes (PRE,
SUM, QualifiedName, and SimpleName) for Eclipse 1, Eclipse 2, and Eclipse 3.
Where the performance of the “best” attributes is better than that of all attributes,
the AUC value is marked in bold font. The results demonstrate that for LLTS
datasets, in 29 out of 40 cases, the “best” attributes outperform all attributes
while for the Eclipse-1, 2, and 3 datasets, the numbers are 37/40, 39/40, and 34/40
respectively.

Table 12. LLTS — “Best” attributes classification performance.

Learner NS RUS35 RUS50 ROS35 ROS50 S35 S50 WW

NB 0.8256 0.8237 0.8246 0.8255 0.8255 0.8272 0.8270 0.8241
MLP 0.8372 0.8348 0.8321 0.8342 0.8329 0.8293 0.8288 0.8369
kNN 0.7654 0.7701 0.7878 0.7583 0.7582 0.7450 0.7333 0.7683
SVM 0.5717 0.8369 0.8369 0.8382 0.8368 0.8370 0.8359 0.8010

LR 0.8381 0.8370 0.8360 0.8375 0.8372 0.8364 0.8360 0.8373

Wrapper-Based Feature Ranking Techniques 461

Table 13. Eclipse — “Best” attributes classification performance.

Grouping Learner NS RUS35 RUS50 ROS35 ROS50 S35 S50 WWwW

Eclipse-1 NB 0.8726 0.8394 0.8322 0.8735 0.8733 0.8866 0.8874 0.8868
MLP 0.9387 0.9399 0.9377 0.8963 0.8824 0.8253 0.8521 0.9380
kNN 0.9182 0.8692 0.8964 0.9136 0.9136 0.8983 0.8934 0.9195
SVM 0.9348 0.9370 0.9373 0.9398 0.9424 0.9402 0.9417 0.9375
LR 0.9273 0.8031 0.8074 0.9158 0.9082 0.9000 0.8975 0.9319

Eclipse-2 NB 0.8449 0.8550 0.8718 0.8464 0.8459 0.8540 0.8543 0.8717
MLP 0.9230 0.9331 0.9330 0.9303 0.9323 0.9314 0.9332 0.9321
kNN 0.9102 0.9160 0.9257 0.9046 0.8932 0.9078 0.9074 0.9127
SVM 0.9273 0.9294 0.9298 0.9309 0.9307 0.9285 0.9308 0.9292
LR 0.9210 0.9209 0.9099 0.9219 0.9220 0.9180 0.9188 0.9274

Eclipse-3 NB 0.7490 0.7565 0.7726 0.7535 0.7529 0.7548 0.7633 0.7877
MLP 0.8859 0.8960 0.8879 0.8780 0.9007 0.8814 0.9006 0.8845
kNN 0.8398 0.8314 0.8472 0.8262 0.8144 0.8366 0.8250 0.8587
SVM 0.8945 0.8975 0.8784 0.8905 0.8805 0.8897 0.8790 0.8876
LR 0.8786 0.8692 0.8809 0.8779 0.8791 0.8702 0.8704 0.8820

7. Conclusion

In this paper, we empirically study our proposed feature ranking method called
wrapper-based feature ranking. The core of this novel method comprises of a perfor-
mance metric, a ranker aid and a methodology. We consider nine performance met-
rics, five different learners and three methodologies (CV, CV-R, and COMBO) in
our evaluation. We build software defect classification models by applying wrapper-
based feature ranking on one software release, and we validate the models on subse-
quent releases totally disjoint from the training dataset. The wrapper-based feature
ranking techniques are evaluated on two sets of software engineering data. Our find-
ings show that the performance of our wrapper-based feature ranking techniques is
dependent on the combination of the ranker aid, the performance metric and the
methodology. They also show that naive Bayes is very stable as a ranker aid for
wrapper-based feature ranking, given that only minor changes are observed with
the ranking techniques. We validate the excellent performance of SVM with feature
selection when subsets are obtained from wrapper-based ranking techniques, but
only with the approach consisting of CV. We also show comparable performance of
logistic regression in conjunction with CV. Our findings not only provide guidance
as to which learner is more stable as a ranker aid but also which approach leads
to better performance results for which of the five learners in terms of AUC. The
CV methodology is more likely to lead to better classification performance in terms
of AUC. We also observe an improvement in the classification performance with
feature selection when sampling is applied to the training data prior to ranking.
Finally, our work provides guidance to software practitioners as to how they
can determine which software metrics that are most useful for defect prediction.
This is a breakthrough not only for software engineering but also for other domains
in which feature selection is a pre-requisite activity. Our guidance extends to how

462 W. Altidor, T. M. Khoshgoftaar & K. Gao

researchers and practitioners can determine the threshold for retaining the top
ranked attributes. Future work can consider various performance metrics (other
than AUC) to assess the performance of these classifier-aided ranking techniques
when building the different quality prediction models.

Acknowledgments

We are grateful to Professor Hoang Pham, EIC of the International Journal of
Reliability, Quality, and Safety Engineering, for his comments and suggestions.

References

1. B. Livshits and T. Zimmermann, Dynamine: Finding common error patterns by min-
ing software revision histories, SIGSOFT Softw. Eng. Notes 30(5) (2005) 296-305.

2. J. S. Shirabad, T. Lethbridge and S. Matwin, Mining the maintenance history of a
legacy software system, in Software Maintenance, ICSM 2003, Proceedings. Interna-
tional Conference on (2003), pp. 95-104.

3. S. Dick, A. Meeks, M. Last, H. Bunke and A. Kandel, Data mining in software met-
rics databases, Fuzzy Sets and Systems 145(1) (2004) 81-110. (computational Intel-
ligence in Software Engineering. [Online]. Available: http://www.sciencedirect.com/
science/article/B6V05-49YH3X J-H/2/b8903e62a58f1097510da041f97e5d 1¢).

4. C. Catal and B. Diri, Investigating the effect of dataset size, metrics sets, and feature
selection techniques on software fault prediction problem, Inf. Sci. 179(8) (2009)
1040-1058.

5. Y. Saeys, I. N. Inza and P. Larranaga, A review of feature selection techniques in
bioinformatics, Bioinformatics 23(19) (2007) 2507-2517.

6. I. Guyon and A. Elisseeff, An introduction to variable and feature selection, J. Mach.
Learn. Res. 3 (2003) 1157-1182.

7. T. M. Khoshgoftaar and K. Gao, A novel software metric selection technique using
the area under ROC curves, in Proceedings of the 22nd International Conference
on Software Engineering and Knowledge Engineering, San Francisco, CA (July 1-3,
2010), pp. 203-208.

8. M. A. Hall, Correlation-based feature selection for discrete and numeric class
machine learning, in Proc. 17th International Conf. on Machine Learning. Mor-
gan Kaufmann, San Francisco, CA (2000), pp. 359-366. [Online]. Available: cite-
seer.ist.psu.edu/hall0Ocorrelationbased.html.

9. H. Wang, T. M. Khoshgoftaar, K. Gao and N. Seliya, Mining data from multiple soft-
ware development projects, in Proceedings of the 3rd IEEE International Workshop
Mining Multiple Information Sources, Miami, FL (December 6, 2009), pp. 551-557.

10. L. Yu and H. Liu, Feature selection for high-dimensional data: A fast correlation-based
filter solution, in Proceedings of the Twentieth International Conference on Machine
Learning. AAAT Press, (2003), pp. 856-863.

11. G. H. John, R. Kohavi and K. Pfleger, Irrelevant features and the subset selec-
tion problem, in International Conference on Machine Learning, (1994), pp.121-129.
(Journal version in AlJ, available at http://citeseer.nj.nec.com/13663.html. [Online].
Available: citeseer.ist.psu.edu/john94irrelevant.html.)

12. H. Guo and Y. L. Murphey, Automatic feature selection — A hybrid statistical
approach, Pattern Recognition, International Conference on, Vol. 2, (2000), p. 2382.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Wrapper-Based Feature Ranking Techniques 463

S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in ICML
'01, Proceedings of the Eighteenth International Conference on Machine Learning. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. (2001), pp. 74-81.

A. L. Blum and P. Langley, Selection of relevant features and examples in machine
learning, Artif. Intell. 97(1-2) (1997) 245-271.

Z. Chen, T. Menzies, D. Port and B. Boehm, Feature subset selection can improve
software cost estimation accuracy, in PROMISE °05: Proceedings of the 2005 Work-
shop on Predictor Models in Software Engineering, New York, NY, USA: ACM (2005),
pp- 1-6.

D. Rodriguez, R. Ruiz, J. Cuadrado-Gallego, J. Aguilar-Ruiz and M. Garre, Attribute
selection in software engineering datasets for detecting fault modules, in FUROMI-
CRO ’07: Proceedings of the 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications, Washington, DC, USA: IEEE Computer Society (2007),
pp. 418-423.

R. Ruiz, J. C. Riquelme and J. S. Aguilar-Ruiz, Incremental wrapper-based gene
selection from microarray data for cancer classification, Pattern Recogn. 39(12) (2006)
2383-2392.

W. Altidor, T. Khoshgoftaar and A. Napolitano, Wrapper-based feature ranking for
software engineering metrics, in Proceedings of the IEEE International Conference
on Machine Learning and Applications — ICMLA 2009, Miami, FL, USA (2009),
pp. 241-246.

K. Gao, T. Khoshgoftaar and A. Napolitano, Exploring software quality classification
with a wrapper-based feature ranking technique, in Proceedings of the 21st IEEE
International Conference on Tools with Artificial Intelligence, Las Vegas, Nevada,
USA (2009), pp. 67-74.

G. Boetticher, T. Menzies and T. Ostrand, Promise repository of empirical software
engineering data, http://promisedata.org/, 2007.

T. Zimmermann, R. Premraj and A. Zeller, Predicting defects for eclipse, in ICSEW
’07, Proceedings of the 29th International Conference on Software Engineering Work-
shops, Washington, DC, USA: IEEE Computer Society (2007), p. 76.

I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, 2nd edn. Morgan Kaufmann (2005). [Online]. Available: /bib/private/
witten/Data Mining Practical Machine Learning Tools and Techniques 2d edu —
Morgan Kaufmann.pdf.

P. Domingos and M. J. Pazzani, On the optimality of the simple bayesian classifier
under zero-one loss, Machine Learning 29(2-3) (1997) 103-130. [Online]. Available:
citeseer.ist.psu.edu/domingos97optimality.html.

H. Liu, J. Li and L. Wong, A comparative study on feature selection and classification
methods using gene expression profiles and proteomic patterns, Genome Informatics
13 (2002) 51-60.

T. Fawcett, ROC graphs: Notes and practical considerations for data mining
researchers, HPL-2003-4, Intelligent Enterprise Technologies Lab, Palo Alto, CA
(2003).

C. L. Jin, C. X. Ling, J. Huang and H. Zhang, Auc: A statistically consistent and more
discriminating measure than accuracy, in Proceedings of 18th International Conference
on Artificial Intelligence (IJCAI-2003), pp. 329-341.

Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto and K.-I. Matsumoto, The effects
of over and under sampling on fault-prone module detection, in ESEM ’07: Proceed-
ings of the First International Symposium on Empirical Software Engineering and
Measurement, Washington, DC, USA: IEEE Computer Society, (2007) pp. 196-204.

464 W. Altidor, T. M. Khoshgoftaar & K. Gao

28. N. V. Chawla, K. W. Bowyer and P. W. Kegelmeyer, Smote: Synthetic minority over-
sampling technique, Journal of Artificial Intelligence Research 16 (2002) 321-357.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary? doi=10.1.1.18.
5547.

About the Authors

Wilker Altidor is a PhD student in the Department of Computer and Electrical
Engineering and Computer Science at Florida Atlantic University. His research
interests include software engineering and data mining and machine learning. Alti-
dor received both BS and MS degrees in computer science from Florida Atlantic
University.

Taghi M. Khoshgoftaar is a professor of the Department of Computer and Electrical
Engineering and Computer Science, Florida Atlantic University and the Director
of the Empirical Software Engineering Laboratory and Data Mining and Machine
Learning Laboratory. His research interests are in software engineering, software
metrics, software reliability and quality engineering, computational intelligence,
computer performance evaluation, data mining, machine learning, and statistical
modeling. He has published more than 450 refereed papers in these areas. He is a
member of the IEEE, IEEE Computer Society, and IEEE Reliability Society. He was
the program chair and general chair of the IEEE International Conference on Tools
with Artificial Intelligence in 2004 and 2005 respectively and was the Program
chair and General Chair of the International Conference on Software Engineer-
ing and Knowledge Engineering in 2008 and 2009 respectively. He is the program
chair of the IEEE International Conference on Machine Learning and Applications
(2010). He has served on technical program committees of various international
conferences, symposia, and workshops. Also, he has served as North American Edi-
tor of the Software Quality Journal, and was on the editorial boards of the journals
Multimedia Tools and Applications and Empirical Software Engineering and is on
the editorial boards of the journals Software Quality, Software Engineering and
Knowledge Engineering, Fuzzy Systems, Knowledge and Information Systems and
Social Network Analysis and Mining.

Kehan Gao received the Ph.D. degree in Computer Engineering from Florida
Atlantic University, Boca Raton, FL, USA, in 2003. She is currently an Associate
Professor in the Department of Mathematics and Computer Science at Eastern
Connecticut State University. Her research interests include software engineering,
software metrics, software reliability and quality engineering, computer performance
modeling, computational intelligence, and data mining. She is a member of the IEEE
Computer Society and the Association for Computing Machinery.

Copyright of International Journal of Reliability, Quality & Safety Engineering is the property of World
Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

www.manharaa.com

